

Development of Kilowatt-Scale Coal Fuel cell Technology

The University of Akron, Akron, OH 44325

Coal is Important. Highest BTU/g

- Abundant domestic reserves
- Low and stable prices
- Provide > ½ nation's electricity
- Future source of H₂

Prices from 2006-2010 (www.eia.doe.gov)
 Natural Gas prices DOE (Average Commercial Prices

3. Gasoline & Diesel Fuel Prices (tonto.eia.doe.gov)

Objectives / Relevance

- Overall Objective: Develop a Kilowatt-scale coal fuel cell technology. The
 results of this R&D efforts will provide the technological basis for developing
 Megawatt scale coal fuel cell technology.
- Relevance: The development of a coal fuel cell technology constitutes a
 highly efficient, clean, multi-use technology, which promises to provide low
 cost electricity, expanding the utilization of domestic coal supplies, and
 providing a smooth transition from a fossil-fuel economy to a hydrogenbased economy. The anode developed for coal fuel cell exhibit high
 resistance to sulfur compounds. This novel anode allow the direct use of
 sulfur-containing hydrogen without complex costly purification steps.
- 2010
 - Evaluate the long term anode and cathode catalyst activity as well as interconnect durability
 - Improve the coal injection and fly ash removal systems.
- 2011
 - Develop the process for fabrication of large scale fuel cell components by tape casting and screen printing.
- Test the long term durability of fuel cell components

Carbon-based Fuel Cell: Operating Principle

Carbon-based Fuel Cell Performance

.....To be completed

Effect of Temperature on the Performance of the carbon-based fuel cells

Low Ash Carbon Fuel at 800, 825 and 850 °C

 Electric power produced by low ash carbon increased by more than 3 times when raising the temperature from 800 to 850 °C.

Coal feeding mechanism

Test of the coal feeding unit with steel auger – Temperature distribution

IR image of temperature distribution along the auger at steady state(MikroSpec RT-M7500); the color scale is calibrated for 20-200°C.

Long Term Carbon-Based Fuel Cell Testing

Power generation with Ohio#5 coke and coconut carbon

The higher power density at 750 °C produced from coconut carbon was attributed to high reactivity of carbon, which contained higher alkali metals.

Fuel / Composition	К%	Ca %	Br%	CI %	Fe%	S %	Ni %	Cr%
Coconut carbon	63.1	13.8	8.91	8.81	2.40	2.09	0.93	
Ohio coke #5	4.0	4.9						

^{*}Carbon is excluded from the composition

SEM-EDS Characterization of the Fuel cell after testing in Sulfur-Containing coke

Conclusions/Future work

.....To be completed

Publications and Presentations

- "Direct Use of Sulfur-Containing Coke on a Ni-Yttria-Stabilized Zirconia Anode Solid Oxide Fuel Cell" Felipe Guzman, Rahul Singh, and Steven S.C. Chuang, Energy & Fuels. 25, (5), 2179-2186, 2011
- "Catalyst Compositions for Use in Fuel Cells," U.S. Patent Application, filed by The University of Akron on Sept 13, 2006

Acknowledgments

- US Department of Energy, DE-FE 0000528
- Ohio Coal development Office, OCDO
- FirstEnergy Corp.